

Innenzahnrad-Einheit

für Motor-/Pumpenbetrieb Baureihe QXM

Referenz: 100-P-000063-DE-11

Stand: 03.2022 1/16

Inhaltsverzeichnis Seite

1	Allge	emeines ·····	5
	1.1	Produktbeschreibung · · · · · · · · · · · · · · · · · · ·	5
	1.2	Vorteile · · · · · · · · · · · · · · · · · · ·	5
	1.3	Anwendungen · · · · · · · · · · · · · · · · · · ·	5
	1.4	EX-Schutz Ausführung · · · · · · · · · · · · · · · · · · ·	5
2	Tech	nnische Daten · · · · · · · · · · · · · · · · · · ·	5
	2.1	Allgemeines	5
	2.2	Kenngrößen für Druckbereich 1 · · · · · · · · · · · · · · · · · ·	6
	2.3	Kenngrößen für Druckbereich 2 · · · · · · · · · · · · · · · · · ·	7
	2.4	Kenngrößen für Druckbereich 3 · · · · · · · · · · · · · · · · · ·	7
3	Kenı	nlinien	8
	3.1	Druckbereich 1 · · · · · · · · · · · · · · · · · ·	8
	3.2	Druckbereich 2 · · · · · · · · · · · · · · · · · ·	9
	3.3	Druckbereich 3 · · · · · · · · · · · · · · · · · ·	10
	3.4	Schalldruckpegel · · · · · · · · · · · · · · · · · · ·	11
4	Abm	essungen ·····	11
	4.1	Druckbereich 1 · · · · · · · · · · · · · · · · · ·	12
	4.2	Druckbereich 2 · · · · · · · · · · · · · · · · · ·	12
	4.3	Druckbereich 3 · · · · · · · · · · · · · · · · · ·	13
	4.4	Bestellangaben · · · · · · · · · · · · · · · · · · ·	13
	4.5	Bestellbeispiel · · · · · · · · · · · · · · · · · · ·	13
	4.6	Standardausführung · · · · · · · · · · · · · · · · · · ·	13
	4.7	Optionen · · · · · · · · · · · · · · · · · ·	14
	4.8	Drehrichtung · · · · · · · · · · · · · · · · · · ·	14
5	Druc	kmittel · · · · · · · · · · · · · · · · · · ·	14
6	Hinw	veis ·····	14
7	Vers	chmutzungsklassifikation · · · · · · · · · · · · · · · · · · ·	14
8	Betri	iebssicherheit · · · · · · · · · · · · · · · · · · ·	14
9	Zube	ehör · · · · · · · · · · · · · · · · · · ·	15
	9.1	Rohrflansche-Hochdruckausführung · · · · · · · · · · · · · · · · · · ·	15
	9.2	Rohrflansche - Niederdruckausführung · · · · · · · · · · · · · · · · · · ·	15
	9.3	Aufbauventile - Bohrbild SAE J518 code 61 / ISO 6162-1 · · · · · · · · · · · · · · · · · · ·	16

1 Allgemeines

1.1 Produktbeschreibung

Die Innenzahnrad-Einheit QXM kann in hydrostatischen Getrieben im offenen und geschlossenen Kreislauf eingesetzt werden. Problemlos ist die QXM als Pumpe und als Motor einsetzbar. Hierdurch ergeben sich vielfältige Einsatzmöglichkeiten, beispielsweise beim Heben und Senken der Lasten.

Die QXM arbeitet beim Heben im Pumpenbetrieb und kann die Energie beim Senken der Last wieder zurückgewinnen. Im 4-Quadrantenbetrieb kann die Innenzahnrad-Einheit QXM die Bewegung eines Zylinders steuern.

Schnelle Beschleunigungs- und Bremsvorgänge lassen sich realisieren. Basis der QXM ist die bekannte QX-Innenzahnradpumpe, die sich durch ihr geringes Laufgeräusch und geringste Druckpulsation auszeichnet. Fein abgestufte Nenngrößen bieten eine optimale Anpassung an den jeweiligen Anwendungsfall.

1.2 Vorteile

- · niedrigste Schallpegel
- · geringste Druckpulsationen
- 400 bar Maximaldruck
- · extrem lange Lebensdauer
- für Sonderflüssigkeiten, z. B. HFB, HFC, HFD oder biologisch abbaubare Flüssigkeiten geeignet
- · variable Drehzahlen möglich
- 2- und 4-Quadrantenbetrieb möglich
- geringe Kavitationsneigung durch optimierte Strömungsquerschnitte und Spezialverzahnung

1.3 Anwendungen

- · Spritzgußmaschinen
- · Hydraulische Pressen
- Flugsimulatoren
- Windkraftanlagen

- Liftantriebe
- Winden
- Schiffsindustrie

1.4 EX-Schutz Ausführung

Unsere Innenzahnrad-Einheit QXM ist für die Verwendung in folgenden explosionsgefährdeten Bereichen geeignet:

Richtlinie 2014/34/EU

Gruppe II Gerätekategorie 3 Art der Atmosphäre G

Temperaturklasse T3 und T4

II 3G Ex h IIC T3 Gc X -20° C \leq T_a \leq +80 $^{\circ}$ C

II 3G Ex h IIC T4 Gc X -20°C \leq T_a \leq +40°C

2 Technische Daten

2.1 Allgemeines

Kenngrößen	Einheit	Bezeichnung, Wert
Einbaulage		beliebig
Befestigungsart (Standard)		2-Loch-Flansch nach ISO 3019/1 (SAE): QXM 3-6 2-Loch-Flansch nach ISO 3019/2 (metrisch): QXM 2+8
Drehrichtung		rechts und links
Antriebsart		über elastische Kupplung
Druckflüssigkeit		HLP-Mineralöl DIN 51524 Teil 2 HFB, HFD und HFC nach VDMA 24317 andere Druckflüssigkeiten auf Anfrage

Kenngrößen	Einheit	Bezeichnung, Wert
Max. zulässiger Verschmutzungsgrad der Druckflüssigkeit		20/18/15 nach ISO 4406
Betriebsviskosität Startviskosität	mm ² /s	10 100 10 300 (abweichende Werte auf Anfrage)
Druckflüssigkeitstemperatur	°C	HLP-Mineralöl min20, max. +80 / HFC max. +50 Bereich für höchste Lebensdauer +30 +60 (Viskositätsgrenzen beachten)
max. Druck am Leckölanschluss	bar	1,5 absolut (andere auf Anfrage)
Summendruck		Anschluß P ₁ + Anschluß P ₂ ≤ Dauer-/ Höchstdruck

WICHTIG: Die nachstehend angegebenen Kenngrößen gelten für Mineralöle nach DIN 51524 bei 42 mm²/s.

2.2 Kenngrößen für Druckbereich 1

Тур		gungs- / volumen		Drehzahl betrieb	maximale [min ⁻¹			osdruck ar]	Drehmo- ment ²⁾
	nominal [cm ³ /U]	effektiv ⁶⁾ [cm ³ /U]	Betriebsdruck am Motoreingang bis 50% bis 100%		Pumpen- betrieb ⁴⁾	Motor- betrieb	konti- nuierlich	intermit- tierend ¹⁾	[Nm]
QXM21-010 QXM21-012 QXM21-016	010 012 016	10,3 12,6 15,9	1000	2500	4000 3600 3200	5500	160 125 100	210 160 125	25
QXM31-020 QXM31-025 QXM31-032	020 025 032	20,0 25,2 32,1	800	2000	3200 3000 5000 2700		160 125 100	210 160 125	50
QXM41-040 QXM41-050 QXM41-063	040 050 063	40,6 50,2 64,5	600	1500	2700 2350 2050	4600	160 125 100	210 160 125	100
QXM51-080 QXM51-100 QXM51-125	080 100 125	78,3 100,6 126,7	600	1500	2050 1900 1620	4000	160 125 100	210 160 125	200
QXM61-160 QXM61-200 QXM61-250	160 200 250	159,7 201,1 248,4	600	1500	1500 1350 1200	3200	160 125 100	210 160 125	400
QXM81-315 QXM81-400 QXM81-500	315 400 500	323,9 400,1 495,4	600	1200	1200 1100 1000	3000	160 125 100	210 160 125	800

¹⁾ Maximal 20 Sekunden pro Minute, jedoch nicht mehr als 10% der Einschaltdauer.

²⁾ Theoretischer Wert bei maximalen, kontinuierlichen Beriebsdrücken (Anlaufdrehmomente siehe Kennfelder Abs. 3).

³⁾ Höhere Drehzahlen auf Anfrage.

⁴⁾ Betriebsdruck am Eingang mindestens 1 bar absolut.

⁵⁾ Empfohlene Drehzahlen. Bei kleineren Drehzahlen muss der Dauerdruck reduziert werden (lineares Verhältnis). Kundenspezifische Zykluszeiten nach Freigabe durch Bucher Hydraulics möglich.

⁶⁾ Aufgrund der Fertigungstoleranzen kann es beim Verdrängungsvolumen geringe Abweichungen geben.

2.3 Kenngrößen für Druckbereich 2

Тур		gungs- / volumen		Drehzahl betrieb	maximale [min ⁻¹		Betriet [b	Drehmo- ment ²⁾	
	nominal	effektiv ⁶⁾		druck am eingang	Pumpen-	Motor-	konti-	intermit-	
	[cm ³ /U]	[cm ³ /U]	bis 50%	bis 100%	betrieb ⁴⁾	betrieb	nuierlich	tierend 1)	[Nm]
QXM22-005 QXM22-006 QXM22-008	005 006 008	5,1 6,3 7,9	1650	3000	3250	6000	210	250	17 21 26,5
QXM32-010 QXM32-012 QXM32-016	010 012 016	10,0 12,6 15,6	1400	2500	3050	5500	210	250	33,5 42 52
QXM42-020 QXM42-025 QXM42-032	020 025 032	20,3 25,1 32,3	1000	1000 1800		5000	210	250	68 84 108
QXM52-040 QXM52-050 QXM52-063	040 050 063	39,1 50,3 63,4	1000	1800	2500	4500	210	250	131 169 212
QXM62-080 QXM62-100 QXM62-125	080 100 125	79,8 100,5 124,2	1000	1800	2250 2050 1800	4000	210	250	268 337 416
QXM82-160 QXM82-200 QXM82-250	160 200 250	161,9 200,0 247,7	1000	1800	1600 1500 1350	3500	210	250	544 671 832

2.4 Kenngrößen für Druckbereich 3

Тур		gungs- / volumen		Drehzahl betrieb	maximale [min ⁻¹			osdruck ar]	Drehmo- ment ²⁾
	nominal	effektiv ⁶⁾		druck am eingang	Pumpen- Motor-		konti-	intermit-	
	[cm ³ /U]	[cm ³ /U]	bis 50%	bis 100%	betrieb ⁴⁾	petrieb ⁴⁾ betrieb		nuierlich tierend 1)	
QXM23-005 QXM23-006 QXM23-008	005 006 008	5,1 6,3 7,9	1200	2500	3250	6000	320	400	26 32 41
QXM33-010 QXM33-012 QXM33-016	010 012 016	10,0 12,6 15,6	1000	2000	3050	5500	320	400	51 64 80
QXM43-020 QXM43-025 QXM43-032	020 025 032	20,3 25,1 32,3	750	1500	2900	5000	320	400	103 128 164
QXM53-040 QXM53-050 QXM53-063	040 050 063	39,1 50,3 63,4	750	1500	2500	4500	320	400	200 257 323
QXM63-080 QXM63-100 QXM63-125	080 100 125	79,8 100,5 124,2	750	1500	2250 2050 1800	4000	320	400	408 514 635
QXM83-160 QXM83-200 QXM83-250	160 200 250	161,9 200,0 247,7	750	1500	1600 1500 1350	3500	320	400	828 1023 1267

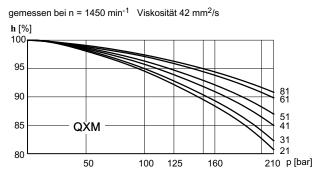
¹⁾ Maximal 20 Sekunden pro Minute, jedoch nicht mehr als 10% der Einschaltdauer.

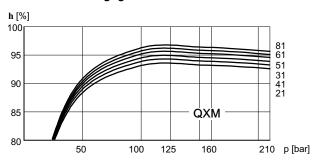
²⁾ Theoretischer Wert bei maximalen, kontinuierlichen Betriebsdrücken (Anlaufdrehmomente siehe Kennfelder Abs. 3).

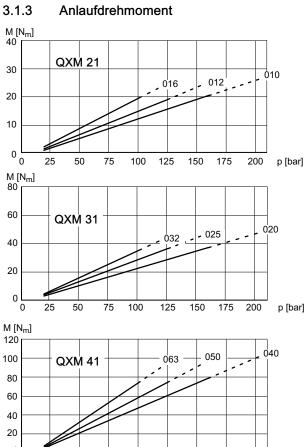
³⁾ Höhere Drehzahlen auf Anfrage.

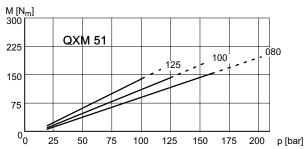
⁴⁾ Betriebsdruck am Eingang mindestens 1 bar absolut.

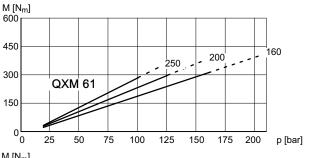
Empfohlene Drehzahlen. Bei kleineren Drehzahlen muss der Dauerdruck reduziert werden (lineares Verhältnis).
 Kundenspezifische Zykluszeiten nach Freigabe durch Bucher Hydraulics möglich.

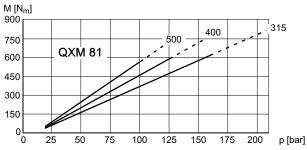

⁶⁾ Aufgrund der Fertigungstoleranzen kann es beim Verdrängungsvolumen geringe Abweichungen geben.

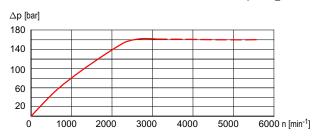

Kennlinien 3


Druckbereich 1


3.1.1 Volumetrischer Wirkungsgrad




3.1.2 Hydraulisch - mechanischer Wirkungsgrad


Maximaler Summendruck an P₁ + P₂ 3.1.4

100

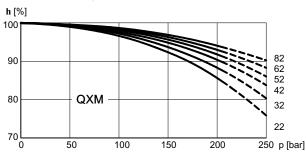
125

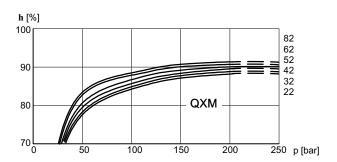
150

175 200

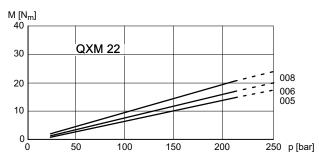
p [bar]

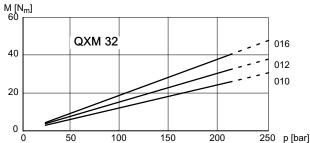
= abhängig von der Baugröße, (siehe 2.2)

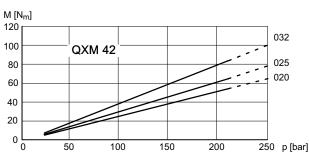

25

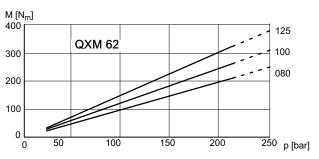

3.2 Druckbereich 2

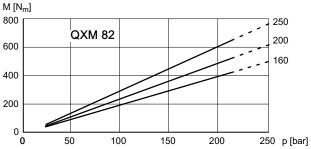
3.2.1 Volumetrischer Wirkungsgrad

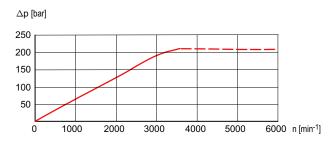

gemessen bei Viskosität 42 mm²/s, Drehzahl 1450 min⁻¹ Volllinie = Dauerdruck, Strichlinie = Höchstdruck




3.2.2 Hydraulisch - mechanischer Wirkungsgrad

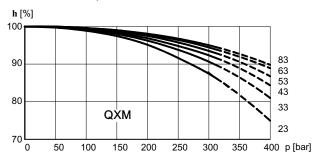

3.2.3 Anlaufdrehmoment



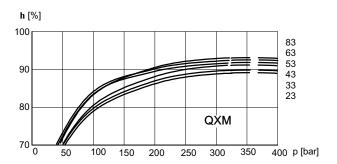


M [N_m] 150 QXM 52 100 50 040 050 100 150 200 250 p [bar]

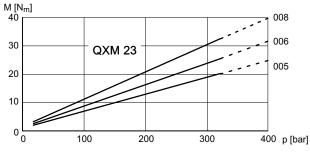
3.2.4 Maximaler Summendruck an $P_1 + P_2$

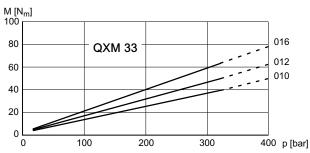

– – – – = abhängig von der Baugröße, (siehe 2.3)

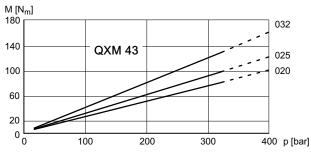
BUCHER hydraulics

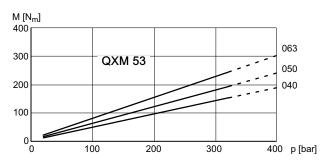

3.3 Druckbereich 3

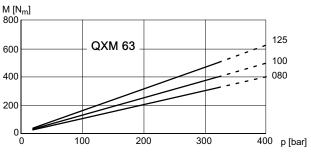
3.3.1 Volumetrischer Wirkungsgrad

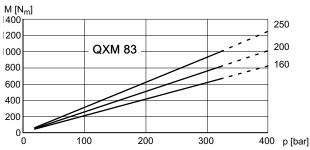

gemessen bei Viskosität 42 mm²/s, Drehzahl 1450 min-1, Volllinie = Dauerdruck, Strichlinie = Höchstdruck

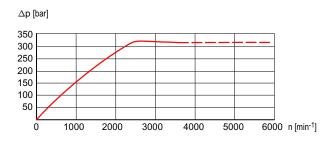


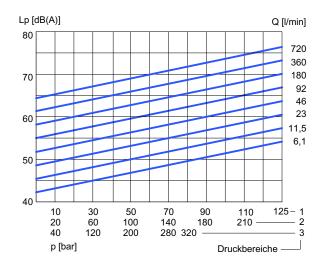

3.3.2 Hydraulisch - mechanischer Wirkungsgrad




3.3.3 Anlaufdrehmoment






3.3.4 Maximaler Summendruck an P₁ + P₂

– – – – – = abhängig von der Baugröße, (siehe 2.4)

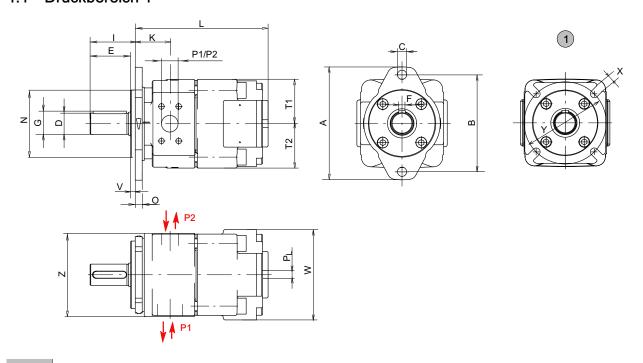
3.4 Schalldruckpegel

Gemessen nach DIN 45635 Teil 26 im reflexionsarmen Schallmessraum.

Messabstand 1 m, n = 1500 min⁻¹, Viskosität = 42 mm²/s

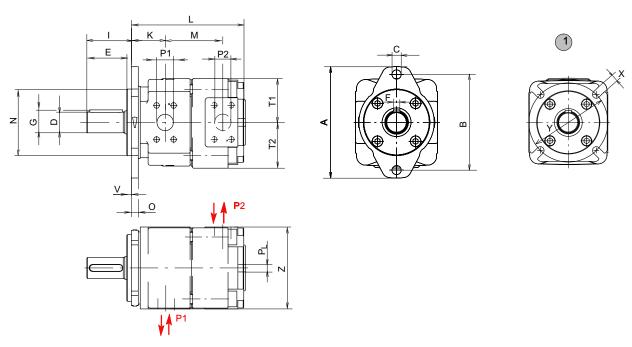
4 Abmessungen

Baugröße		2			3			4			5		6			8			
Druckbereid	Druckbereich 1 2 3		3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	
Anschlüsse SAE J518 1) P ₁ , P ₂			G1/2" ³⁾ Gewinde		G 3/4" ³⁾ Gewinde			1"				1 1/4"			1 1/2"		2"		
Leckölanschluss nach DIN 3852 Teil 2	PL		G1/4"			G1/4"			G1/4"			G1/4"			G 3/8"			G1/2"	
	Α		118			132			170			212			267			330	
Befestigungsart,	B _(SAE)		-			106			146			181			229			-	
ovaler 2-Loch	B _(Metr)	100				109			140			180			224			280	
Flansch ISO 3019/1	С	9				11			14			18			22			26	
(SAE - Baugröße 3-6)	N _(SAE)	-			8	2,55 - 0,	05	101	101,6 - 0,05			127 - 0,05			2,4 - 0	,05	-		
ISO 3019/2 (Metr Baugröße 2+8)	N _(Metr.)	63 h8			80 h8			100 - h8			125 h8			160 h8			200 h8		ı
(0	8,5				8,5			10,5			12,5			16,5			20	
	V		6			6			7			7			7			9	
	D	20 j6		25 j6			32 j6			40 j6			50 j6			63 j6			
Wellenende	Е		36		42			58			82			82			105		
zylindrisch	F		6		8			10			12			14			18		
ISO/R775 ²⁾	G		22,5		28			35			43			53,5			67		
	I		45		50			68				92			92			117	
	K		37,5			44			52,5			60,5			74			90	
	L	139,5	121,5	156,5	165,5	145,5	190,5	203,5	178	233,5	243,5	211,5	281,5	288	249	339	361	331	429
Gehäuse	М	-	55	90	-	69,5	114,5	-	87	143	-	102	172	-	119	209	-	151	266
Genause	T1		43			53,5			66,5			88,5		107	1	10		137,5	
	T2		43			53,5			66,5		88,5			107 110			137,5		
	Z		100			120		125			156			195			250		
	W		80		100			123			165			203			264		
Masse	kg	5,7	5,4	6,5	10,3	9,2	12,4	19	17	20	34	31	41	59	56	76	129	122	155


¹⁾ Anbaubild für Rohrflansche nach SAE J518 code 61 bzw. ISO6162-1 (siehe Abs. 9).

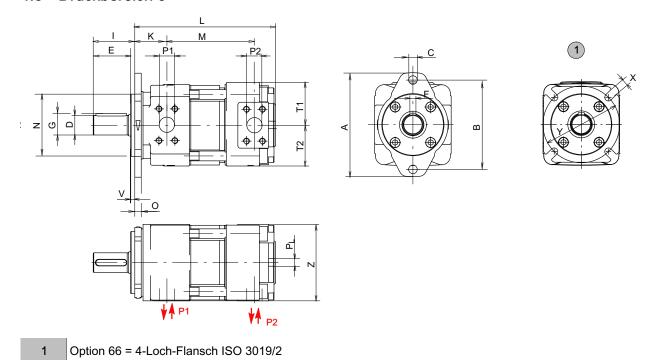
²⁾ Andere Wellenenden auf Anfrage.

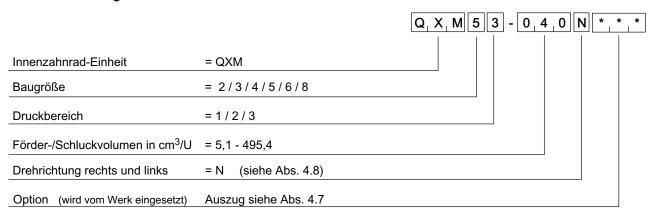
³⁾ Gewindeanschluss nach DIN 3852 Teil 2.



4.1 Druckbereich 1

1 Option 66 = 4-Loch-Flansch ISO 3019/2


4.2 Druckbereich 2


1 Option 66 = 4-Loch-Flansch ISO 3019/2

4.3 Druckbereich 3

4.4 Bestellangaben

4.5 Bestellbeispiel

Gesucht: Innenzahnrad-Einheit QXM

Förder-/Schluckvolumen: 40 cm³/U
Dauerdruck: 300 bar
Einsatz mit Mineralöl: HLP

Bestellbezeichnung: QXM 53-040 N

4.6 Standardausführung

- Drehrichtung rechts / links
- 2-Loch Befestigungsflansch nach ISO 3019/1; Baugröße QXM 3-6
 2-Loch Befestigungsflansch nach ISO 3019/2; Baugröße QXM 2+8
- · Dichtungswerkstoffe aus NBR
- Wellenende zylindrisch nach ISO R775
- Separater Leckölanschluss im hinteren Deckel
- Anschlüsse P₁ + P₂ gleich groß
- · Druckbelastbare Wellendichtung
- · Schwarz grundiert, Flanschflächen nicht grundiert

4.7 Optionen

ohne Grundierung -0

Dichtungswerkstoffe aus FPM (Viton), 09

ohne Grundierung

130 2-Quadrantenbetrieb, Abmessungen der Arbeitsanschlüsse wie bei den QX-Pumpen 2-Loch Befestigungsflansch nach ISO 3019/2 (metrisch)

Weitere Optionen auf Anfrage

4.8 Drehrichtung

Drehrichtung rechts = Ölstrom fließt von P₁ nach P₂ (Blick auf das Wellenende: im Uhrzeigersinn)

Drehrichtung links = Ölstrom fließt von P2 nach P1

(Blick auf das Wellenende: gegen den Uhrzeigersinn)

5 **Druckmittel**

Die Ölqualität darf die Verschmutzungsklasse 20/18/15 nach ISO 4406 nicht überschreiten.

Wir empfehlen die Verwendung von Druckflüssigkeiten, die Additive zum Verschleißschutz im Mischreibungsbetrieb enthalten. Druckflüssigkeiten ohne entsprechende Additive beeinträchtigen die Lebensdauer der Pumpen und Motoren. Für die Einhaltung und laufende Prüfung der Qualität der Druckflüssigkeit ist der Anwender verantwortlich. Bucher Hydraulics empfiehlt einen Belastbarkeitswert nach Brugger DIN 51347-2 von \geq 30 N/mm².

6 Hinweis

Dieser Katalog ist für Anwender mit Fachkenntnissen bestimmt. Um sicherzustellen, dass alle für Funktion und Sicherheit des Systems erforderlichen Randbedingungen erfüllt sind, muß der Anwender die Eignung der hier beschriebenen Geräte überprüfen. Bei Unklarheiten bitten wir um Rücksprache.

7 Verschmutzungsklassifikation

Reinheitsklassen (RK) nach ISO 4406.

Code	Anzah	I don Dontikal /	100 ml						
	Anzahl der Partikel / 100 ml								
ISO 4406									
	≥ 4 µm	≥ 6 µm	≥ 14 µm						
23/21/18	8000000	2000000	250000						
22/20/18	4000000	1000000	250000						
22/20/17	4000000	1000000	130000						
22/20/16	4000000	1000000	64000						
21/19/16	2000000	500000	64000						
20/18/15	1000000	250000	32000						
19/17/14	500000	130000	16000						
18/16/13	250000	64000	8000						
17/15/12	130000	32000	4000						
16/14/12	64000	16000	4000						
16/14/11	64000	16000	2000						
15/13/10	32000	8000	1000						
14/12/9	16000	4000	500						
13/11/8	8000	2000	250						

Betriebssicherheit 8

Für einen sicheren Betrieb und eine lange Lebensdauer ist für das Aggregat, die Maschine oder Anlage ein Wartungsplan zu erstellen. Der Wartungsplan muss gewährleisten, dass die vorgesehenen oder zulässigen Betriebsbedingungen für die Gebrauchsdauer eingehalten werden. Insbesondere ist die Einhaltung folgender Betriebsparameter sicherzustellen:

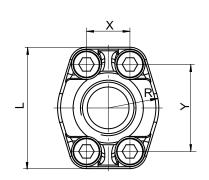
- die geforderte Ölreinheit
- der Betriebstemperaturbereich
- der Füllstand des Betriebsmediums

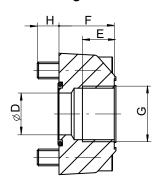
Weiterhin ist die QXM-Einheit und die Anlage regelmäßig auf Veänderungen folgender Parameter zu überprüfen:

- Vibrationen
- Geräusch
- Differenztemperatur zur Druckflüssigkeit im Behälter
- Schaumbildung im Behälter
- Dichtheit

Veränderungen dieser Parameter weisen auf Verschleiß von z. B. Antriebsmotor, Kupplung, Innenzahnrad-Einheit QXM usw. hin.

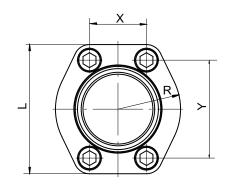
Die Ursache ist umgehend zu ermitteln und abzustellen. Für eine hohe Betriebssicherheitin der Maschine oder Anlage empfehlen wir die kontinuierliche automatische Kontrolle oben genannter Parameter und automatische Abschaltung im Falle von Veränderungen, die über das Maß der üblichen Schwankungen in dem vorgesehenen Betriebsbereich hinausgehen.

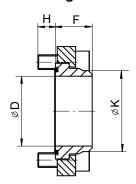

Kunststoffkomponenten von Antriebskupplungen sollen regelmäßig, spätestens jedoch nach 5 Jahren getauscht werden. Die jeweiligen Herstellerangaben sind vorrangig zu berücksichtigen.


Inbetriebnahme siehe Betriebsanleitung 100-I-000014

9 Zubehör

9.1 Rohrflansche-Hochdruckausführung

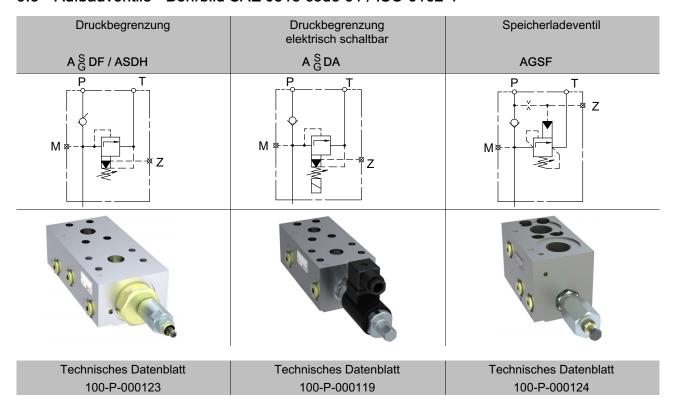

- max. Betriebsdruck 420 bar
- Bohrbild nach SAE J518 code 61 / ISO 6162-1
- Werkstoff: ST37


 O-Ringe in FPM(Viton) auf Anfrage
 Rohrflansche mit Gewinde besitzen eine Plansenkung für Rohrverschraubung nach DIN 2353.

Bestell- nummer	Bestell- angaben	G Zoll	DØ	E	F	Н	L	R	X	Υ	O-Ring, 90 Shore A	Schrau DIN 912 Anzugsm	2-12.9
100037000	RF 01-R08	G 1/2"	12,5	16	27	13	54	23	17,5	38	20,24x2,62	M8x30	30
100037010	RF 02-R10	G 3/4"	20	18	30	12	65	26	22,2	47,6	26,65x2,62	M10x30	60
100037020	RF 03-R11	G 1"	25	20	34	13	70	29	26,2	52,4	32,99x2,62	M10x35	60
100037030	RF 04-R12	G 1 1/4"	32	22	38	14	80	36	30,2	58,6	40,86x3,53	M10x40	60
100037040	RF 05-R13	G 1 1/2"	38	24	41	19	94	41	35,7	70	44,04x3,53	M12x45	120
100037050	RF 06-R14	G 2"	50	26	45	20	102	48	42,9	77,8	59,92x3,53	M12x50	120
100055470*	RF 07-R16	G 2 1/2" *	63	30	50	18	114	57	50,8	89	72,62x3,53	M12x45	120

^{*} bei RF07 nur bis 210 bar zulässig

9.2 Rohrflansche - Niederdruckausführung


- max. Betriebsdruck 16 bar
- Bohrbild nach SAE J518 code 61 / ISO 6162-1
- Werkstoff: HST37
- O-Ringe in FPM(Viton) auf Anfrage

Bestell- nummer	Bestell- anga- ben	SAE Bohrbild	D	K	F	Н	L	R	X	Y	O-Ring, 90 Shore A	Schraul DIN 912 M _{A [} Nr	-8.8	Rohr ¹⁾ Ø außen ca.
100062450	RN07-S	2 1/2"	63	75	35	14	120	57	51	89	69,44x3,53	M12x30	70	75
100063880	RN08-S	3"	76	88			140,5	68	62	106,5	85,32x3,53	M16x40	180	88
100063890	RN09-S	3 1/2"	89	100	40	19	158,5	73	70	120,3	98,02x3,53	M16x40	180	100
100063900	RN10-S	4"	103	115			168	79	78	130	110,72x3,53	M16x40	180	115

¹⁾ Als Anschlußrohr wird empfohlen: Nahtloses Präzisionsstahlrohr nach DIN 2391 mit einer Wandstärke von max. 6 mm.

9.3 Aufbauventile - Bohrbild SAE J518 code 61 / ISO 6162-1

9.3.1 Beispiele Aufbauventile montiert

Aufbauventil mit Gewindeanschlüsse	Aufbauventil mit SAE-Rohrflansche 1)	Aufbauventil mit SAE-Rohrflansche + Rückschlagventil ²⁾
AGDF	ASDF+RF	ASDF+RF+RVSAE+DPSAE+ZPSAE

2) Kontaktieren Sie Bucher Hydraulics GmbH bezügl. den passenden Rückschlagventilen.

WICHTIG: Weitere Informationen zu diesen Aufbauventilen finden Sie unter www.bucherhydraulics.com

info.kl@bucherhydraulics.com

www.bucherhydraulics.com

© 2022 by Bucher Hydraulics GmbH, D-79771 Klettgau Alle Rechte vorbehalten.

Die angegebenen Daten dienen allein der Produktbeschreibung und sind nicht als zugesicherte Eigenschaften im rechtlichen Sinne zu verstehen. Die Angaben entbinden den Anwender nicht von eigenen Beurteilungen und Prüfungen. Auf Grund kontinuierlicher Verbesserungen der Produkte sind Änderungen der in diesem Katalog gemachten Produktspezifikationen vorbehalten.

Klassifikation: 420.245.200